Copied to
clipboard

G = C32×D8order 144 = 24·32

Direct product of C32 and D8

direct product, metacyclic, nilpotent (class 3), monomial

Aliases: C32×D8, C243C6, C4.1C62, D4⋊(C3×C6), C81(C3×C6), (C3×C24)⋊5C2, (C3×D4)⋊4C6, (C3×C6).41D4, C6.20(C3×D4), C12.23(C2×C6), (D4×C32)⋊7C2, C2.3(D4×C32), (C3×C12).50C22, SmallGroup(144,106)

Series: Derived Chief Lower central Upper central

C1C4 — C32×D8
C1C2C4C12C3×C12D4×C32 — C32×D8
C1C2C4 — C32×D8
C1C3×C6C3×C12 — C32×D8

Generators and relations for C32×D8
 G = < a,b,c,d | a3=b3=c8=d2=1, ab=ba, ac=ca, ad=da, bc=cb, bd=db, dcd=c-1 >

Subgroups: 114 in 66 conjugacy classes, 42 normal (10 characteristic)
C1, C2, C2, C3, C4, C22, C6, C6, C8, D4, C32, C12, C2×C6, D8, C3×C6, C3×C6, C24, C3×D4, C3×C12, C62, C3×D8, C3×C24, D4×C32, C32×D8
Quotients: C1, C2, C3, C22, C6, D4, C32, C2×C6, D8, C3×C6, C3×D4, C62, C3×D8, D4×C32, C32×D8

Smallest permutation representation of C32×D8
On 72 points
Generators in S72
(1 34 61)(2 35 62)(3 36 63)(4 37 64)(5 38 57)(6 39 58)(7 40 59)(8 33 60)(9 28 54)(10 29 55)(11 30 56)(12 31 49)(13 32 50)(14 25 51)(15 26 52)(16 27 53)(17 69 42)(18 70 43)(19 71 44)(20 72 45)(21 65 46)(22 66 47)(23 67 48)(24 68 41)
(1 31 17)(2 32 18)(3 25 19)(4 26 20)(5 27 21)(6 28 22)(7 29 23)(8 30 24)(9 47 58)(10 48 59)(11 41 60)(12 42 61)(13 43 62)(14 44 63)(15 45 64)(16 46 57)(33 56 68)(34 49 69)(35 50 70)(36 51 71)(37 52 72)(38 53 65)(39 54 66)(40 55 67)
(1 2 3 4 5 6 7 8)(9 10 11 12 13 14 15 16)(17 18 19 20 21 22 23 24)(25 26 27 28 29 30 31 32)(33 34 35 36 37 38 39 40)(41 42 43 44 45 46 47 48)(49 50 51 52 53 54 55 56)(57 58 59 60 61 62 63 64)(65 66 67 68 69 70 71 72)
(2 8)(3 7)(4 6)(9 15)(10 14)(11 13)(18 24)(19 23)(20 22)(25 29)(26 28)(30 32)(33 35)(36 40)(37 39)(41 43)(44 48)(45 47)(50 56)(51 55)(52 54)(58 64)(59 63)(60 62)(66 72)(67 71)(68 70)

G:=sub<Sym(72)| (1,34,61)(2,35,62)(3,36,63)(4,37,64)(5,38,57)(6,39,58)(7,40,59)(8,33,60)(9,28,54)(10,29,55)(11,30,56)(12,31,49)(13,32,50)(14,25,51)(15,26,52)(16,27,53)(17,69,42)(18,70,43)(19,71,44)(20,72,45)(21,65,46)(22,66,47)(23,67,48)(24,68,41), (1,31,17)(2,32,18)(3,25,19)(4,26,20)(5,27,21)(6,28,22)(7,29,23)(8,30,24)(9,47,58)(10,48,59)(11,41,60)(12,42,61)(13,43,62)(14,44,63)(15,45,64)(16,46,57)(33,56,68)(34,49,69)(35,50,70)(36,51,71)(37,52,72)(38,53,65)(39,54,66)(40,55,67), (1,2,3,4,5,6,7,8)(9,10,11,12,13,14,15,16)(17,18,19,20,21,22,23,24)(25,26,27,28,29,30,31,32)(33,34,35,36,37,38,39,40)(41,42,43,44,45,46,47,48)(49,50,51,52,53,54,55,56)(57,58,59,60,61,62,63,64)(65,66,67,68,69,70,71,72), (2,8)(3,7)(4,6)(9,15)(10,14)(11,13)(18,24)(19,23)(20,22)(25,29)(26,28)(30,32)(33,35)(36,40)(37,39)(41,43)(44,48)(45,47)(50,56)(51,55)(52,54)(58,64)(59,63)(60,62)(66,72)(67,71)(68,70)>;

G:=Group( (1,34,61)(2,35,62)(3,36,63)(4,37,64)(5,38,57)(6,39,58)(7,40,59)(8,33,60)(9,28,54)(10,29,55)(11,30,56)(12,31,49)(13,32,50)(14,25,51)(15,26,52)(16,27,53)(17,69,42)(18,70,43)(19,71,44)(20,72,45)(21,65,46)(22,66,47)(23,67,48)(24,68,41), (1,31,17)(2,32,18)(3,25,19)(4,26,20)(5,27,21)(6,28,22)(7,29,23)(8,30,24)(9,47,58)(10,48,59)(11,41,60)(12,42,61)(13,43,62)(14,44,63)(15,45,64)(16,46,57)(33,56,68)(34,49,69)(35,50,70)(36,51,71)(37,52,72)(38,53,65)(39,54,66)(40,55,67), (1,2,3,4,5,6,7,8)(9,10,11,12,13,14,15,16)(17,18,19,20,21,22,23,24)(25,26,27,28,29,30,31,32)(33,34,35,36,37,38,39,40)(41,42,43,44,45,46,47,48)(49,50,51,52,53,54,55,56)(57,58,59,60,61,62,63,64)(65,66,67,68,69,70,71,72), (2,8)(3,7)(4,6)(9,15)(10,14)(11,13)(18,24)(19,23)(20,22)(25,29)(26,28)(30,32)(33,35)(36,40)(37,39)(41,43)(44,48)(45,47)(50,56)(51,55)(52,54)(58,64)(59,63)(60,62)(66,72)(67,71)(68,70) );

G=PermutationGroup([[(1,34,61),(2,35,62),(3,36,63),(4,37,64),(5,38,57),(6,39,58),(7,40,59),(8,33,60),(9,28,54),(10,29,55),(11,30,56),(12,31,49),(13,32,50),(14,25,51),(15,26,52),(16,27,53),(17,69,42),(18,70,43),(19,71,44),(20,72,45),(21,65,46),(22,66,47),(23,67,48),(24,68,41)], [(1,31,17),(2,32,18),(3,25,19),(4,26,20),(5,27,21),(6,28,22),(7,29,23),(8,30,24),(9,47,58),(10,48,59),(11,41,60),(12,42,61),(13,43,62),(14,44,63),(15,45,64),(16,46,57),(33,56,68),(34,49,69),(35,50,70),(36,51,71),(37,52,72),(38,53,65),(39,54,66),(40,55,67)], [(1,2,3,4,5,6,7,8),(9,10,11,12,13,14,15,16),(17,18,19,20,21,22,23,24),(25,26,27,28,29,30,31,32),(33,34,35,36,37,38,39,40),(41,42,43,44,45,46,47,48),(49,50,51,52,53,54,55,56),(57,58,59,60,61,62,63,64),(65,66,67,68,69,70,71,72)], [(2,8),(3,7),(4,6),(9,15),(10,14),(11,13),(18,24),(19,23),(20,22),(25,29),(26,28),(30,32),(33,35),(36,40),(37,39),(41,43),(44,48),(45,47),(50,56),(51,55),(52,54),(58,64),(59,63),(60,62),(66,72),(67,71),(68,70)]])

C32×D8 is a maximal subgroup of   C327D16  C328SD32  C248D6  C24.26D6

63 conjugacy classes

class 1 2A2B2C3A···3H 4 6A···6H6I···6X8A8B12A···12H24A···24P
order12223···346···66···68812···1224···24
size11441···121···14···4222···22···2

63 irreducible representations

dim1111112222
type+++++
imageC1C2C2C3C6C6D4D8C3×D4C3×D8
kernelC32×D8C3×C24D4×C32C3×D8C24C3×D4C3×C6C32C6C3
# reps112881612816

Matrix representation of C32×D8 in GL3(𝔽73) generated by

800
080
008
,
100
0640
0064
,
7200
01657
01616
,
7200
010
0072
G:=sub<GL(3,GF(73))| [8,0,0,0,8,0,0,0,8],[1,0,0,0,64,0,0,0,64],[72,0,0,0,16,16,0,57,16],[72,0,0,0,1,0,0,0,72] >;

C32×D8 in GAP, Magma, Sage, TeX

C_3^2\times D_8
% in TeX

G:=Group("C3^2xD8");
// GroupNames label

G:=SmallGroup(144,106);
// by ID

G=gap.SmallGroup(144,106);
# by ID

G:=PCGroup([6,-2,-2,-3,-3,-2,-2,457,3244,1630,88]);
// Polycyclic

G:=Group<a,b,c,d|a^3=b^3=c^8=d^2=1,a*b=b*a,a*c=c*a,a*d=d*a,b*c=c*b,b*d=d*b,d*c*d=c^-1>;
// generators/relations

׿
×
𝔽